Skip to main content

Molecular Methods




Molecular Methods

Protein-Based Technique


lsozyme analyses


Fatty acid profiles


MALDI-TOF mass spectrometry



Molecular methods to characterize, identify, and classify organisms do not depend on the subjective judgment of a human being as it might occur us-ing classical methods, but are based on the objective information (molecules) deriving from the target organism. Thus, molecular methods are increasingly used to identify organisms and for taxonomy research (molecular systematic). In the 1980s, molecular methods were established for wood-decay and staining fungi. Mainly, the fungal proteins (enzymes) and nucleic acids are used. It is outside the intention of this book to describe all molecular techniques that are currently used in the field of biology. The following overview comprises only some methods and results that are related to the characterization, identifica-tion, and phylogeny of wood-inhabiting fungi, particularly wood-decay fungi. Genome sequencing (meanwhile over 100 genomes are sequenced), molecular engineering, cloning, etc. are briefly addressed in other chapters. As an ex-ample of the latter, Lee et al. (2002) transformed the wild-type and the albino strain of the blue-stain fungus Ophiostoma piliferum with a green fluorescent protein (GFP) to microscopically differentiate the GPF-expressing fungi from other fungi in wood.


SDS polyacrylamide gel electrophoresis( SDS-PAGE) In SDS-PAGE, the whole cell protein is extracted from fungal tissue, denatured, and negatively charged with mercaptoethanol and sodium dodecyl sulfate !d by (SDS). The proteins are separated according to size on acrylamide gels and ernet visualized by Coomassie blue, amido black, fast green, imidazole-zinc or silver Eu- staining. The banding pattern obtained discriminates at the species level and nisa- slightly below. tions SDS-PAGE was used for wood-inhabiting Ascomycetes and Deuteromycetes .e re- like the Cancer stain disease fungus of plane, Ceratocystis fimbriata f. platani, (Granata et al. 1992) and Trichoderma species (Wallace et al. 1992). The technique also differentiated a number of wood-decay fungi (Schmidt and Kebernik 1989; Vigrow et al. 1989, 1991a; Schmidt and Moreth-Kebernik Df mi-1991a, 1993; Palfreyman et al. 1991; McDowell et al. 1992; Schmidt and Moreth 1995). For example, the closely related Serpula lacrymans, S. himantioides and the "American dry rot fungus", Meruliporia incrassata, were distinguished (Schmidt and Moreth-Kebernik 1989a). Figure 2.19 shows that the technique also detected a misnamed isolate of S. lacrymans. In addition, monokaryons and F1 dikaryons of S. lacrymans exhibited the typical species profile (Schmidt and Moreth-Kebernik 1990). There was no need to extrapolate on a possible influence of culture age or medium composition (Schmidt and Kebernik 1989).

SDS-PAGE is fast when the sample originates from a pure culture and can be performed within 1 day. Reproducible homemade gels require accuracy and precautions, as acrylamide is carcinogenic in the unpolymerized form. Prefabricated gels are expensive. At least regarding wood-decay fungi, the method did not reach a practical application.


Isozyme analyses have been used to distinguish similar and closely related species and forms, for investigations on the genetical variability and on the spread of pathogens (e.g., Blaich and Esser 1975; Prillinger and Molitoris 1981; Micales et al. 1992). Being functional proteins, isozymes are investigated by native electrophoresis or isoelectric focusing. There are a number of investi-gations on mycorrhizal fungi, e.g., Pisolithus and Scleroderma species (Sims et al. 1999) and on tree parasites, like Armillaria species (Bragaloni et al. 1997) and Heterobasidion annosum (Karlsson and Stenlid 1991). Two-dimensional gel electrophoresis, comprising isoelectric focusing and subsequent SDS-PAGE, is able to separate a sample of a large number of pro-teins.
Immunological methods Wood fungi can be also detected and identified by immunological (serolog-ical) methods. Immunological assays use polyclonal antisera or monoclonal antibodies. Antisera produced by animals like mice and rabbits as answer to the injection of mycelial fragments, extracts or culture filtrates are inves-tigated by Western blotting, enzyme-linked immunosorbent assay (ELISA) or immunofluorescence (Clausen 2003).

However, the experiments often ex-hibit cross-reactions with non-target organisms, even when monoclonal anti-bodies after fusion with myeloma cells (hybridomas) are used. Investigations were performed with e.g., Armillaria spp., Coniophora puteana, Gloeophyllum trabeum, Lentinula edodes, Lentinus lepideus, Oligoporus placenta, Phellinus pini, S. lacrymans, Trametes versicolor and with wood-stain fungi (Jellison and Goodell 1988; Palfreyman et al. 1988; Breuil et al. 1988; Glancy et al. 1990; Burdsall et al. 1990; Vigrow et al. 1991b, 1991c; Clausen et al. 1991, 1993; Kim et al. 1991a, 1991b, 1993; Toft 1992, 1993; McDowell et al. 1992; Clausen 1997a; Breuil and Seifert 1999; Hunt et al. 1999). The diagnostic potential lies in the identification of species without the need of preceding isolation and pure culturing and in the detection of fungi at early stages of decay (Clausen and Kartal 2003). 

The methods may become applicable when the producing techniques for hybridomas and diagnostic kits have been established. Immunological methods were also used to visualize the distribution of enzymes of wood-degrading fungi within and around the hypha and in woody tissue.



Comments

Top 10 post

Reproduction of Deuteromycetes

    F ungi that reproduce asexually (anamorphic fungi ) are either yeasts or Deu-teromycetes. The term "yeast" is descriptive and stands for any fungus that reproduces by budding. Deuteromycetes (Fungi imperfecti, colloquially: molds) is an artificial as-semblage of fungi that reproduce asexually by conidia (conidiospores), either as the only form for propagation (imperfect fungi) or additionally (anamorph) to a sexual reproduction (teleomorph). When both the anamorph and the teleo-morph are known, the fungus is called a holomorph (the whole fungus). The teleomorph may have one (mono-anamorphic) or many (pleo-anamorphic) asexual stages. In other words: Deuteromycetes are the conidia-producing forms of a fungus and may or may not be associated with a teleomorph. Many Deuteromycetes are supposed to have a teleomorph in the Ascomycetes, but they may also have basidiomycetous affinity. Also in the wood-inhabiting Deuteromycetes, the teleomorph often is of ascomycetous a

What shapes the peer review landscape in ecology?

It was great to be discussing the future of peer review with researchers at the recent peer review  panel discussion  organised by the British Ecological Society (BES) at their annual conference in Liverpool last week. Jane Hill (Professor of Ecology at the University of York and Chair of BES Publications Committee) chaired the debate, and we heard from Allen Moore (Editor-in-Chief,  Ecology and Evolution),  Patricia Morse (Managing Editor,  American Naturalist ), Nate Sanders (Senior Editor,  Journal of Animal Ecology ), Andy Robertson (Senior Vice President & Managing Director, Society Services, Wiley) and me. We started with a discussion of ways in which the publishing process could be opened up, with Allen advocating open science principles and pre-registration of research. Nate also shared his experience in the value of “opening up” research online to get people talking and to generate new ideas. Andy Robertson suggested that partnering with services such as  Overlea

Islands

      H ow often have you seen those wonderful advertisements inviting you to have a holiday on a tropical island ( Fig. )What is it about islands, whether in the tropics or polar regions, that suggests romance, excitement and adventure? Is it because of a sense of escape from the pressures and stress of a bustling way of life, or the opportunity to savour sun-soaked beaches, or the adventure of rocky unexplored shores, or perhaps the chance of seeing unique island wildlife? It is for all these reasons that there is a growing tourist industry for many islands around the world. The wildlife of islands, especially oceanic islands , has long been of special significance in biology , ecology , conservation and biogeography. Studies of island species have also been of historical significance for evolutionary biology. Many of the world's islands have high levels of endemic flora and fauna; that is, taxa found only on a particular island and no other place.  Island biota has o

Red Streaking

Red Streaking Red-streaking discoloration (known as "Rotstreifigkeit" in Germany) is one of the most common and important damage in seasoning logs and sawn lumber, occurring only in conifers (spruce, pine, fir) and recognized as a distinct con-dition in continental Europe.  The stripe-shaped to spotted yellow to reddish-brown discoloration extends in logs from both their bark-covered faces and from their cut ends (Butin 1995; Baum and Bariska 2002) . Stems that are not debarked show a rather flat discoloration and debarked stems exhibit a streakier staining (v. Pechmann et al. 1967). Causal agents are several white-rot Basidiomycetes, in spruce particularly Stereum sanguinolentum (Kleist and Seehann 1997) and Amylostereum areola-turn. In south Germany, Amylostereum chailettii is common (Zycha and Knopf 1963; v. Pechmann et al. 1967).  In pine, red streaking is mainly due to Trichap-turn abietinum (Butin 1995). According to Kreisel (1961), S. sanguinolentum and T

Ecosia ; Ecology Search

https://www.ecosia.org/ How it works You search the web with Ecosia.   Ads Search ads generate income for Ecosia.   Ecosia uses this income to plant trees. httpecologicaljournal.blogspot.com Ecosia about video

Bioenergetics

T housands of chemical reactions occur throughout the body during each minute of the day. Collec-tively, these reactions are called metabolism. Metab-olism includes chemical pathways that result in the synthesis of molecules (anabolic reactions) as well as the breakdown of molecules (catabolic reactions). Since energy is required by all cells, it is not sur-prising that cells possess chemical pathways that are capable of converting foodstuffs (i.e., fats, proteins, carbohydrates) into a biologically usable form of energy .  This metabolic process is termed bioenergetics. In order for you to run, jump, or swim, skeletal muscle cells must be able to continuously extract energy from food nutrients. In fact, the inability to transform energy contained in foodstuffs into usable biological energy would limit performance in endurance activities. The explanation for this is simple. To continue to contract, muscle cells must have a continuous source of energy. When energy is not rea

White Rot

W hite-rot research has been reviewed by Ericksson et al. (1990) and Mess-ner et al. (2003). White rot means the degradation of cellulose, hemicellu-loses, and lignin usually by Basidiomycetes and rarely by Ascomycetes, e.g., Kretzschmaria deusta and Xylaria hypoxylon.  White rot has been classified by macroscopic characteristics into white-pocket, white-mottled, and white-stringy, the different types being affected by the fungal species, wood species, and ecological conditions. From microscopic and ultrastructural investiga-tions, two main types of white rot have been distinguished (Liese 1970).  In the simultaneous white rot ("corrosion rot"), carbohydrates and lignin are almost uniformly degraded at the same time and at a similar rate during all decay stages. Typical fungi with simultaneous white rot are Fomes fomentar-ws, Phellinus igniarius, Phellinus robustus, and Trametes versicolor in standing trees and stored hardwoods (Blanchette 1984a).  Wood decay

Soft Rot

The term " soft rot " was originally used by Findlay and Savory (1954) to describe a specific type of wood decay caused by Ascomycetes and Deuteromycetes which typically produce chains of cavities within the S2 layer of soft- and hardwoods in terrestrial and aquatic environments (Liese 1955), for example when the wood-fill  in cooling towers became destroyed despite water saturation, and when poles broke, although they were protected against Basidiomvcetes.  About 300 species (Seehann et al. 1975) to some 1,600 examples of ascomvcete and deuteromvcete fungi (Eaton and Hale 1993) cause soft rot, e.g., Chaeromium globosurn (Takahashi 1978), Hurnicola spp., Lecythophora hoffrnannii, Monodictys putredinis, Paecilornyces spp., and Thielavia terrestris. Soft-rot fungi differ from brown-rot and white-rot Basidiomycetes by grow-ing mainly inside the woody cell wall trate, starting from the tracheidal lumina., by means of thin perforation hyphae of less than 0.5 pm thickne

Antagonists, Synergists, and Succession

                Interactions (reciprocal effects) between wood fungi have been early investi-gated e.g., by Oppermann (1951) and Leslie et al. (1976), and were described in detail by Rayner and Boddy (1988). Antagonism (competitive reciprocal effect), the mutual inhibition and in a broader sense the inhibition of one organism by others, is based on the pro-duction of toxic metabolites, on mycoparasitism, and on nutrient competition.  Antagonisms are investigated as alternative to the chemical protection against tree fungi ("biological forest protection") and against fungi on wood in service ("biological wood protection") (Walchli 1982; Bruce 1992; Holdenrieder and Greig 1998; Phillips-Laing et al. 2003). As early as 1934, Weindling showed the inhibiting effect of Trichoderma species on several fungi. Bjerkandera adusta and Ganoderma species were antagonistic against the causing agent of Plane canker stain disease (Grosclaude et al. 1990). Also, v. Aufseg (197

Sexual Reproduction

A specific feature of the sexual reproduction of Ascomycetes and Basid-iomycetes is that plasmogamy of haploid cells and karyogamy of two nuclei (n) to form a diploid nucleus (2n) are separated from each other temporally as well spatially by the dikaryophase (two-nuclei phase, dikaryon, n + n, ===) (Fig.1). A dikaryotic hypha is one with two nuclei that derive from two haploid hyphae, but in which the nuclei are not yet fused by karyogamy. Particularly in Basidiomycetes, the dikaryotic phase is considerably ex-tended. By conjugated division of the two nuclei (conjugated mitosis), by division of the dikaryotic hypha, and by means of a special nucleus migration connested with camp formation both daughter cells become again dikaryotic.  Ascomycetes  The life cycle of a typical ascomycete is shown in Fig.1 (also Muller and Loeffler 1992; Eaton and Hale 1993; Schwantes 1996; Jennings and Lysek 1999). Haploid (n) spores (A, ascospores or conidia from an anamorph) germi-nate