Skip to main content

Production, Dispersal and Germination of Spores


Spores represent in the life cycle of a fungus a state of rest (low water content, high nutrient content; "latent life") between the active phase of spore dispersal and start of new growth. Serpula lacrymans produces 300,000 (Falck 1912) to 360,000 (Rypaek 1966) and Piptoporus betulinus 31,000,000 (Kramer 1982) spores per hour and cm2 of hymenium. Many forest mycorrhizal fungi fruit at higher air moisture content and lower temperature in the autumn. Among the tree parasites, Heterobasi-dion annosum disperse spores almost over the whole year, Laetiporus sul-phureus in the autumn.

 Many Basidiomycetes disperse their spores actively for 0.1-0.2 mm (ballis-tospores) so that the spores more easily reach the open air (Schwantes 1996). In Schizophyllum commune, a liquid drop at the sterigma becomes larger and hurls the spore into the airflow (Muller and Loeffler 1992). Moykkynen (1997), using a wind tunnel, measured for the conidia of Heterobasidion annosum that a threshold speed of an airflow of 1.8 m/s liberates the spores.

Falck (1912) calculated the mass of a spore of S. lacrymans as 171 x 10-12 g. Fungal spores exhibit a density of 1.1 dp. In standing air, spores sink with sedimentation speeds of 0.03 - 0.55 cm/s (Reiss 1997).

A continuously colonized area can expand 50 km over the year. In an appropriate air stream, spores can be transported up to 1,000 km (Burnett 1976).

Furthermore, spores are spread by rain and snow. Animals distribute spores that are attached by the spore surface sculpturing (see Fig. 2.9) or remain indigested. Assumably by international trade, the causal agent of the Dutch Elm disease, Ophiostoma ulmi, was imported from Asia to Europe in 1918 .

 The spore content in air is subject to characteristic rhythms. In Central Europe, it is higher in the summer at warm temperatures and low relative air humidity than in the winter. Basidiospores and ascospores are numer-ous in the air in spring and in autumn. Conidia have a maximum from June to September. In cities in temperate regions, the spore concentration of Cla-dosporium, mainly C. herbarum, often rises up to 10,000 - 15,000 spores/m3 air with peaks of more than 50,000 spores/m3 (Nolard 2004).

Air turbulence during stable areas of high pressure may result in daily rhythms, the concen-tration rising during the midday (Reig 1997). Interiors with high dust content (e.g., the wood-processing industry) may exhibit increased spore contents.

The lifespan of spores in free air is affected by temperature, air humidity, and sun exposure. As unpigmented spores are sensitive to UV light, pigmented spores predominate in the air.

 Exogenously dormant spores only germinate when the environmental conditions (nutrients, temperature, pH value) become favor-able. Endogenously dormant spores fail to germinate even under favorable conditions, which is due to factors within the spore such as nutrient imper-meability or the presence of endogenous inhibitors. Dormancy within these spores is broken by ageing when nutrients begin to enter or the inhibitors leach out (Robson 1999).

 Prior to the emergence of one or more germ tubes, spores undergo a process of swelling during which they increase in diameter due to the uptake of water. The metabolic activity, production of protein, DNA and RNA all increase. The percentage of germinating spores depends on fungal species, spore age, temperature, available moisture, and substrate. In Serpula lacrymans, only 30% of sampled spores germinated in vitro (Hegarty et al. 1987). For the conidia of Heterobasidion annosum, the thermal cardinal points were 0 °C minimum, be-tween 12 and 28 'C optimum and 34 °C maximum (Courtois 1972).

Depending on the species, the duration of the germination ability reaches from a few days or weeks, like in Stereum species, to several years in Chaetomium globosum, and can reach up to about 20 years in S. lacrymans (Grosser et al. 2003). Germination of spores of wood fungi is favored by high air humidity, warmth, and pH values of 4-6. In Serpula lacrymans, citric acid (Hegarty et al. 1987) and vitamin B1 (Czaja and Pommer 1959) stimulated germination. Heartwood compounds may inhibit. 


Comments

Top 10 post

Reproduction of Deuteromycetes

    F ungi that reproduce asexually (anamorphic fungi ) are either yeasts or Deu-teromycetes. The term "yeast" is descriptive and stands for any fungus that reproduces by budding. Deuteromycetes (Fungi imperfecti, colloquially: molds) is an artificial as-semblage of fungi that reproduce asexually by conidia (conidiospores), either as the only form for propagation (imperfect fungi) or additionally (anamorph) to a sexual reproduction (teleomorph). When both the anamorph and the teleo-morph are known, the fungus is called a holomorph (the whole fungus). The teleomorph may have one (mono-anamorphic) or many (pleo-anamorphic) asexual stages. In other words: Deuteromycetes are the conidia-producing forms of a fungus and may or may not be associated with a teleomorph. Many Deuteromycetes are supposed to have a teleomorph in the Ascomycetes, but they may also have basidiomycetous affinity. Also in the wood-inhabiting Deuteromycetes, the teleomorph often is of ascomycetous a

What shapes the peer review landscape in ecology?

It was great to be discussing the future of peer review with researchers at the recent peer review  panel discussion  organised by the British Ecological Society (BES) at their annual conference in Liverpool last week. Jane Hill (Professor of Ecology at the University of York and Chair of BES Publications Committee) chaired the debate, and we heard from Allen Moore (Editor-in-Chief,  Ecology and Evolution),  Patricia Morse (Managing Editor,  American Naturalist ), Nate Sanders (Senior Editor,  Journal of Animal Ecology ), Andy Robertson (Senior Vice President & Managing Director, Society Services, Wiley) and me. We started with a discussion of ways in which the publishing process could be opened up, with Allen advocating open science principles and pre-registration of research. Nate also shared his experience in the value of “opening up” research online to get people talking and to generate new ideas. Andy Robertson suggested that partnering with services such as  Overlea

Islands

      H ow often have you seen those wonderful advertisements inviting you to have a holiday on a tropical island ( Fig. )What is it about islands, whether in the tropics or polar regions, that suggests romance, excitement and adventure? Is it because of a sense of escape from the pressures and stress of a bustling way of life, or the opportunity to savour sun-soaked beaches, or the adventure of rocky unexplored shores, or perhaps the chance of seeing unique island wildlife? It is for all these reasons that there is a growing tourist industry for many islands around the world. The wildlife of islands, especially oceanic islands , has long been of special significance in biology , ecology , conservation and biogeography. Studies of island species have also been of historical significance for evolutionary biology. Many of the world's islands have high levels of endemic flora and fauna; that is, taxa found only on a particular island and no other place.  Island biota has o

Red Streaking

Red Streaking Red-streaking discoloration (known as "Rotstreifigkeit" in Germany) is one of the most common and important damage in seasoning logs and sawn lumber, occurring only in conifers (spruce, pine, fir) and recognized as a distinct con-dition in continental Europe.  The stripe-shaped to spotted yellow to reddish-brown discoloration extends in logs from both their bark-covered faces and from their cut ends (Butin 1995; Baum and Bariska 2002) . Stems that are not debarked show a rather flat discoloration and debarked stems exhibit a streakier staining (v. Pechmann et al. 1967). Causal agents are several white-rot Basidiomycetes, in spruce particularly Stereum sanguinolentum (Kleist and Seehann 1997) and Amylostereum areola-turn. In south Germany, Amylostereum chailettii is common (Zycha and Knopf 1963; v. Pechmann et al. 1967).  In pine, red streaking is mainly due to Trichap-turn abietinum (Butin 1995). According to Kreisel (1961), S. sanguinolentum and T

Ecosia ; Ecology Search

https://www.ecosia.org/ How it works You search the web with Ecosia.   Ads Search ads generate income for Ecosia.   Ecosia uses this income to plant trees. httpecologicaljournal.blogspot.com Ecosia about video

Bioenergetics

T housands of chemical reactions occur throughout the body during each minute of the day. Collec-tively, these reactions are called metabolism. Metab-olism includes chemical pathways that result in the synthesis of molecules (anabolic reactions) as well as the breakdown of molecules (catabolic reactions). Since energy is required by all cells, it is not sur-prising that cells possess chemical pathways that are capable of converting foodstuffs (i.e., fats, proteins, carbohydrates) into a biologically usable form of energy .  This metabolic process is termed bioenergetics. In order for you to run, jump, or swim, skeletal muscle cells must be able to continuously extract energy from food nutrients. In fact, the inability to transform energy contained in foodstuffs into usable biological energy would limit performance in endurance activities. The explanation for this is simple. To continue to contract, muscle cells must have a continuous source of energy. When energy is not rea

White Rot

W hite-rot research has been reviewed by Ericksson et al. (1990) and Mess-ner et al. (2003). White rot means the degradation of cellulose, hemicellu-loses, and lignin usually by Basidiomycetes and rarely by Ascomycetes, e.g., Kretzschmaria deusta and Xylaria hypoxylon.  White rot has been classified by macroscopic characteristics into white-pocket, white-mottled, and white-stringy, the different types being affected by the fungal species, wood species, and ecological conditions. From microscopic and ultrastructural investiga-tions, two main types of white rot have been distinguished (Liese 1970).  In the simultaneous white rot ("corrosion rot"), carbohydrates and lignin are almost uniformly degraded at the same time and at a similar rate during all decay stages. Typical fungi with simultaneous white rot are Fomes fomentar-ws, Phellinus igniarius, Phellinus robustus, and Trametes versicolor in standing trees and stored hardwoods (Blanchette 1984a).  Wood decay

Soft Rot

The term " soft rot " was originally used by Findlay and Savory (1954) to describe a specific type of wood decay caused by Ascomycetes and Deuteromycetes which typically produce chains of cavities within the S2 layer of soft- and hardwoods in terrestrial and aquatic environments (Liese 1955), for example when the wood-fill  in cooling towers became destroyed despite water saturation, and when poles broke, although they were protected against Basidiomvcetes.  About 300 species (Seehann et al. 1975) to some 1,600 examples of ascomvcete and deuteromvcete fungi (Eaton and Hale 1993) cause soft rot, e.g., Chaeromium globosurn (Takahashi 1978), Hurnicola spp., Lecythophora hoffrnannii, Monodictys putredinis, Paecilornyces spp., and Thielavia terrestris. Soft-rot fungi differ from brown-rot and white-rot Basidiomycetes by grow-ing mainly inside the woody cell wall trate, starting from the tracheidal lumina., by means of thin perforation hyphae of less than 0.5 pm thickne

Antagonists, Synergists, and Succession

                Interactions (reciprocal effects) between wood fungi have been early investi-gated e.g., by Oppermann (1951) and Leslie et al. (1976), and were described in detail by Rayner and Boddy (1988). Antagonism (competitive reciprocal effect), the mutual inhibition and in a broader sense the inhibition of one organism by others, is based on the pro-duction of toxic metabolites, on mycoparasitism, and on nutrient competition.  Antagonisms are investigated as alternative to the chemical protection against tree fungi ("biological forest protection") and against fungi on wood in service ("biological wood protection") (Walchli 1982; Bruce 1992; Holdenrieder and Greig 1998; Phillips-Laing et al. 2003). As early as 1934, Weindling showed the inhibiting effect of Trichoderma species on several fungi. Bjerkandera adusta and Ganoderma species were antagonistic against the causing agent of Plane canker stain disease (Grosclaude et al. 1990). Also, v. Aufseg (197

Sexual Reproduction

A specific feature of the sexual reproduction of Ascomycetes and Basid-iomycetes is that plasmogamy of haploid cells and karyogamy of two nuclei (n) to form a diploid nucleus (2n) are separated from each other temporally as well spatially by the dikaryophase (two-nuclei phase, dikaryon, n + n, ===) (Fig.1). A dikaryotic hypha is one with two nuclei that derive from two haploid hyphae, but in which the nuclei are not yet fused by karyogamy. Particularly in Basidiomycetes, the dikaryotic phase is considerably ex-tended. By conjugated division of the two nuclei (conjugated mitosis), by division of the dikaryotic hypha, and by means of a special nucleus migration connested with camp formation both daughter cells become again dikaryotic.  Ascomycetes  The life cycle of a typical ascomycete is shown in Fig.1 (also Muller and Loeffler 1992; Eaton and Hale 1993; Schwantes 1996; Jennings and Lysek 1999). Haploid (n) spores (A, ascospores or conidia from an anamorph) germi-nate